Diffusion approximation for hyperbolic stochastic differential equations
نویسندگان
چکیده
منابع مشابه
strong approximation for itô stochastic differential equations
in this paper, a class of semi-implicit two-stage stochastic runge-kutta methods (srks) of strong global order one, with minimum principal error constants are given. these methods are applied to solve itô stochastic differential equations (sdes) with a wiener process. the efficiency of this method with respect to explicit two-stage itô runge-kutta methods (irks), it method, milstien method, sem...
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملapproximation of stochastic advection diffusion equations with finite difference scheme
in this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. we applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. the main properties of deterministic difference schemes,...
متن کاملAdaptive Weak Approximation of Stochastic Differential Equations
Adaptive time-stepping methods based on the Monte Carlo Euler method for weak approximation of Itô stochastic differential equations are developed. The main result is new expansions of the computational error, with computable leading-order term in a posteriori form, based on stochastic flows and discrete dual backward problems. The expansions lead to efficient and accurate computation of error ...
متن کاملDiscrete approximation of stochastic differential equations
It is shown how stochastic Itô-Taylor schemes for stochastic ordinary differential equations can be embedded into standard concepts of consistency, stability and convergence. An appropriate choice of function spaces and norms, in particular a stochastic generalization of Spijker’s norm (1968), leads to two-sided estimates for the strong error of convergence under the usual assumptions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1996
ISSN: 0304-4149
DOI: 10.1016/s0304-4149(96)00098-1